The Dynamics of Neural Fields on Bounded Domains: An Interface Approach for Dirichlet Boundary Conditions

نویسندگان

  • Aytül Gökçe
  • Daniele Avitabile
  • Stephen Coombes
چکیده

Continuum neural field equations model the large-scale spatio-temporal dynamics of interacting neurons on a cortical surface. They have been extensively studied, both analytically and numerically, on bounded as well as unbounded domains. Neural field models do not require the specification of boundary conditions. Relatively little attention has been paid to the imposition of neural activity on the boundary, or to its role in inducing patterned states. Here we redress this imbalance by studying neural field models of Amari type (posed on one- and two-dimensional bounded domains) with Dirichlet boundary conditions. The Amari model has a Heaviside nonlinearity that allows for a description of localised solutions of the neural field with an interface dynamics. We show how to generalise this reduced but exact description by deriving a normal velocity rule for an interface that encapsulates boundary effects. The linear stability analysis of localised states in the interface dynamics is used to understand how spatially extended patterns may develop in the absence and presence of boundary conditions. Theoretical results for pattern formation are shown to be in excellent agreement with simulations of the full neural field model. Furthermore, a numerical scheme for the interface dynamics is introduced and used to probe the way in which a Dirichlet boundary condition can limit the growth of labyrinthine structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method

The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...

متن کامل

A Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates

This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...

متن کامل

Nonlocal Robin Laplacians and Some Remarks on a Paper by Filonov

The aim of this paper is twofold: First, we characterize an essentially optimal class of boundary operators Θ which give rise to self-adjoint Laplacians −∆Θ,Ω in L (Ω; dx) with (nonlocal and local) Robin-type boundary conditions on bounded Lipschitz domains Ω ⊂ R, n ∈ N, n ≥ 2. Second, we extend Friedlander’s inequalities between Neumann and Dirichlet Laplacian eigenvalues to those between nonl...

متن کامل

Analysis of thin plates by a combination of isogeometric analysis and the Lagrange multiplier approach

The isogeometric analysis is increasingly used in various engineering problems. It is based on Non-Uniform Rational B-Splines (NURBS) basis function applied for the solution field approximation and the geometry description. One of the major concerns with this method is finding an efficient approach to impose essential boundary conditions, especially for inhomogeneous boundaries. The main contri...

متن کامل

Generalized Robin Boundary Conditions, Robin-to-dirichlet Maps, and Krein-type Resolvent Formulas for Schrödinger Operators on Bounded Lipschitz Domains

We study generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Kreintype resolvent formulas for Schrödinger operators on bounded Lipschitz domains in R, n > 2. We also discuss the case of bounded C-domains, (1/2) < r < 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017